Chem. Ber. 116, 2337 - 2343 (1983)

Reaktionen von Komplexliganden, XXIII¹⁾

Bis(phosphino)inden-Derivate durch C – C-Verknüpfung von Arylcarben-Liganden und Bis(diphenylphosphino)acetylen

Karl Heinz Dötz*, Ingrid Pruskil, Ulrich Schubert und Klaus Ackermann

Anorganisch-Chemisches Institut der Technischen Universität München, Lichtenbergstr. 4, D-8046 Garching

Eingegangen am 2. November 1982

Pentacarbonyl(methoxyphenylcarben)-Komplexe des Chroms und Wolframs (**1a**, **2a**) reagieren mit Bis(diphenylphosphino)acetylen (**3**) unter CO-Substitution zu den zweikernigen alkin-verbrückten Bis(carben)-Komplexen (CO)₄[CH₃O(C₆H₅)C]M – [(C₆H₅)₂P – C \equiv C – P(C₆H₅)₂]-M(CO)₄[C(OCH₃)C₆H₅] (**4a**, **5a**). Die Chrom-Verbindung **4a** wird beim Erwärmen in den Tetracarbonyl[1,2-bis(phosphino)inden]chrom-Komplex **6a** und **1a** gespalten. Aus den Arylcarben-Chrom-Komplexen (CO)₅Cr[C(*p*-RC₆H₄)OCH₃] (R = H, CH₃, CF₃) (**1a** – c) und **3** entstehen direkt die 1,2-Bis(phosphino)inden-Derivate **6a** – c. Der Molekülbau von **6c** wird durch eine Röntgenstrukturanalyse belegt.

Reactions of Complex Ligands, XXIII¹⁾

Bis(phosphino)indene Derivatives from Carbon Carbon Bond Formation between Arylcarbene Ligands and Bis(diphenylphosphino)acetylene

Pentacarbonyl(methoxyphenylcarbene) complexes of chromium and tungsten (1a, 2a) react with bis(diphenylphosphino)acetylene (3) via CO substitution to give binuclear alkyne bridged bis(carbene) complexes $(CO)_4[CH_3O(C_6H_5)C]M - [(C_6H_5)_2P - C \equiv C - P(C_6H_5)_2] - M(CO)_4[C(OCH_3) - C_6H_5]$ (4a, 5a). The chromium compound 4a is cleaved on warming to yield the tetracarbonyl [1,2-bis(phosphino)indene]chromium complex 6a and 1a. In a one-pot reaction the bis(phosphino)indene derivatives 6a - c are formed directly from arylcarbene chromium complexes $(CO)_5Cr[C(p-RC_6H_4)OCH_3]$ (R = H, CH_3 , CF_3) (1a-c) and 3. The structure of 6c is established by X-ray analysis.

Pentacarbonyl(arylmethoxycarben)-Komplexe des Chroms reagieren mit aliphatischen oder aromatischen Alkinen zu metallkoordinierten Naphthol-Derivaten^{1,2)}. Heterosubstituierte Alkine liefern dagegen meist acyclische Reaktionsprodukte, wie die Einschiebung von Inaminen in die Metall-Carben-Bindung^{3,4)} oder die Bildung von Vinylketenen aus Bis(trimethylsilyl)acetylen⁵⁾ zeigen. Wir berichten im folgenden über die Verknüpfung von Arylcarbenen mit Bis(phosphino)acetylen, die in Gegenwart eines Chrom(0)-Zentrums zum Bis(phosphino)inden-Gerüst führt.

Präparative und spektroskopische Ergebnisse

Die Carben-Komplexe des Chroms und Wolframs 1a und 2a reagieren mit Bis(diphenylphosphino)acetylen (3) unter CO-Substitution zunächst zu den zweikernigen alkinverbrückten Biscarben-Verbindungen **4a** und **5a**. Den v(C = O)-Banden (Tab. 1) ist zu entnehmen, daß – ähnlich wie bei der Darstellung einkerniger Carben-Phosphan-Komplexe⁶⁾ – beide Metallzentren überwiegend *cis*-konfiguriert sind. Diese Zuordnung wird durch die ¹H-NMR-chemischen Verschiebungen der Methoxycarben-Funktionen bestätigt, die bei *cis*-Carben-Phosphan-Komplexen im Vergleich zu den *trans*-Isomeren tieffeldverschoben sind⁶⁾. Somit kann aus den ¹H-NMR-Spektren (Tab. 2) ein *cis/cis:cis/trans*-Verhältnis von 3:1 (**4a**) bzw. 10:1 (**5a**) abgeleitet werden, während die *trans/trans*-Konfiguration nicht nachweisbar ist.

In ähnlicher Weise kann über die Konfiguration beider Metallzentren auch mit Hilfe der ³¹P-NMR-Spektren (Tab. 2) unterschieden werden⁷⁾. Gegenüber einer einzigen Resonanzabsorption bei den *cis/cis*-Komplexen werden bei den *cis/trans*-Isomeren zwei Signale beobachtet, von denen das bei tieferem Feld erscheinende der *trans*-disubstituierten Komplexhälfte zuzuordnen ist.

Im Gegensatz zur Wolfram-Verbindung **5a** wird der Chrom-Komplex **4a** beim Erwärmen gespalten. Neben der Ausgangs-Carben-Verbindung **1a** erhält man den Tetracarbonyl-Bis(phosphan)-Komplex **6a**, in dem der Carben-Ligand unter Einbeziehung des Alkins zu einem 1,2-Bis(phosphino)-3-methoxyinden anelliert ist. Dieser Ringschluß kann auch im Eintopf-Verfahren aus den Pentacarbonyl-Carben-Komplexen **1a - c** und dem Alkin **3** verwirklicht werden.

Chem. Ber. 116 (1983)

	A ₁ ⁽²⁾	A ₁ ⁽¹⁾	B ₁ , B ₂
4a ^{b)}	2022 m	1927 s(sh)	1921 vs(sh)
5a ^{b)}	2027 m	1934 s(br)	1924 s(br), 1907 s(sh)
6a	2014 m	1930 s(br)	1903 vs(br)
6b	2013 m	1928 s(br)	1901 vs(br)
6c	2015 m	1931 s(br)	1904 vs(br)

Tab. 1. v(C = O)-Absorptionsfrequenzen^a) (in cm⁻¹) von 4a, 5a und 6a - c

a) In *n*-Hexan. - b) *cis/cis*-Isomere.

Tab. 2. ¹H-^{a)} und ³¹P-NMR-Spektren^{b)} von 4a, 5a und 6a - c (δ -Werte, [D₂]Methylenchlorid)

	4,5,7-H (m)	C ₆ H ₅ (m)	1-H (d)	OCH ₃ (s)	PPh ₂
4a		7.73		4.50 ^{c)}	49.01(s) ^{c)}
		7.48		3.90 ^{c)}	41.13(s) ^{d)}
		7.26		3.88 ^d)	$40.46(s)^{c}$
		6.73			
5a		7.75		4.57 ^{c)}	1.79(s) ^{c)}
		7.53		4.25 ^{c)}	$0.25(s)^{d}$
		7.28		4.28 ^d)	$-3.72(s)^{c}$
6a	7.81 ^{e)}	7.51	4.64 ^{f)}	3.43	66.53(d) ^{g)}
		7.25			50.70(d) ^{g)}
6 b ^{h)}	7.82	7.50	4.54 ^{f)}	3.43	66.39(d) ⁱ⁾
		7.20			50.37(d) ⁱ⁾
6c	7.77	7.53	4.66 ^{j)}	3.38	67.23(d) ^k)
		7.25			51.82(d) ^{k)}

^{a)} Rel. int. TMS. – ^{b)} Rel. ext. 85% H₃PO₄. – ^{c)} *cis/trans*-Isomere. – ^{d)} *cis/cis*-Isomere. – ^{e)} Einschließlich 6-H. – ^{f)} ${}^{2}J_{P,H} = 13.7$ Hz. – ^{g)} ${}^{3}J_{P,P} = 26.8$ Hz. – ^{h)} CH₃: 2.16(s). – ⁱ⁾ ${}^{3}J_{P,P} = 26.9$ Hz. – ^{j)} ${}^{2}J_{P,H} = 13.6$ Hz. – ^{k)} ${}^{3}J_{P,P} = 24.4$ Hz.

CO C-2 bis -7a $C \equiv C$ OCH₃ C-1 C_{Carben} C₆H₅ 350.7a) 230.1^{b)} d) 4a 153.6 65.6 225.7 123.9 - 135.8220.5c) 209.0f) 320.2e) 5a 155.0 67.1 203.5^{g)} 123.8-136.0 103.6ⁱ) 200.3^h) 228.8 119.6 - 143.859.3 58.8 6a 228.0 222.4 221.3 6b^{j)} 228.8 118.0 - 144.259.1 58.8 228.2 222.5 221.1 6 C ca. 228.0 121.8 - 143.959.6 58.9 ca. 221.5

Tab. 3. ¹³C-NMR-Spektren von **4a**, **5a** und **6a** – c (δ -Werte, rel. [D₂]Methylenchlorid = 53.7 ppm, [D₂]Methylenchlorid)

a) ${}^{2}J_{P,C} = 12.2 \text{ Hz.} - {}^{b}) J_{P,C} = 9.8 \text{ Hz.} - {}^{c}) J_{P,C} = 14.7 \text{ Hz.} - {}^{d})$ Nicht eindeutig zuzuordnen. - ${}^{e}) {}^{2}J_{P,C} = 7.3 \text{ Hz.} - {}^{f}) J_{P,C} = 4.9 \text{ Hz.} - {}^{g}) J_{P,C} = 24.4 \text{ Hz.} - {}^{h}) J_{P,C} = 7.3 \text{ Hz.} - {}^{i}) {}^{1}J_{P,C} = 58.6 \text{ Hz.} - {}^{j}) \text{ CH}_{3}: 21.6.$

Chem. Ber. 116 (1983)

Die Inden-Komplexe 6a-c sind durch IR- (Tab. 1), ¹H-NMR-, ¹³C-NMR- und ³¹P-NMR-Spektren (Tab. 2 und 3) charakterisiert. Der Inden-Komplex 6c wurde zusätzlich röntgenographisch untersucht. Dadurch konnte die 1,2-Stellung der Phosphinosubstituenten am Inden-Fünfring sichergestellt werden. Demgegenüber wurde, ausgehend vom Carben-Komplex **1a** und Bis(diethylamino)acetylen, ein Ringschluß zum 2,3-Bis(amino)-1-methoxyinden-Liganden beobachtet⁸⁾. In dieser Reaktionsfolge, die im Gegensatz zu Gl. (1) mit einem nucleophilen Angriff des Alkins am Carbenkohlenstoff eingeleitet wird, ließen sich die einkernigen Carben-Komplexe **7** und **8** als Zwischenstufen nachweisen⁹⁾.

Über die Stufe der Zweikern-Komplexe 4 werden somit erstmals P-funktionalisierte Indene aus Phenylcarben- und Bis(phosphino)alkin-Bausteinen zugänglich.

Röntgenstrukturanalyse von 6c

Das Inden-Grundgerüst in **6c** ist weitgehend planar. Während die Atome C51 bis C56 einschließlich C7, C6 und O5 streng koplanar sind, liegt das sp³-hybridisierte Kohlenstoffatom C5 mit 4.9(7) pm ein wenig über der Ebene der übrigen Kohlenstoffatome. P1, das ebenfalls ein Substituent der Doppelbindung C6 – C7 ist, liegt 26.7(2) pm unter dieser Ebene, so daß die beiden Alkyliden-Hälften der C6 – C7-Doppelbindung (P1,C6,C5 bzw. C56,C7,O5) mit 8.9° leicht gegeneinander verdrillt sind.

Abb. 1. Molekülgeometrie von 6c

Der Cr – P1 – C6 – C5 – P2-Fünfring besitzt annähernde Halbsessel-Konformation mit P2 über der Ebene der übrigen Ringatome (Torsionswinkel Cr – P1 – C6 – C5 8.8°; Winkel zwischen der least-squares-Ebene aus Cr,P1,C6,C5 und der Ebene Cr,P2,C5 38.1°). Der Unterschied zwischen den Bindungslängen P1 – C6 und P2 – C5 ergibt sich aus der Radien-Differenz sp²- bzw. sp³-hybridisierter Kohlenstoffatome. Die Asymmetrie des CrP₂C₂-Fünfrings verursacht eine leicht unsymmetrische Verzerrung des $Cr(CO)_4$ -Teils, wobei eine Abbiegung der axialen CO-Liganden weg vom Chelatliganden festzustellen ist¹⁰. Ausgewählte Atomabstände und Winkel sowie die Atomkoordinaten sind in den Tab. 4 und 5 zusammengestellt. Abb. 1 zeigt eine Ansicht von **6c**.

Abstände	(in pm)	Winkel (in C	(rad)		
Cr -C1	186.6(9)	P1-Cr-P2	83.38(8)	Cr-P2-C5	106.0 (2)
Cr -C2	182.5(9)	P1-Cr-C4	92.7 (3)	P1-C6-C5	119.6 (5)
Cr -C3	189.2(9)	P2-Cr-C2	91.1 (3)	P2-C5-C6	109.0 (5)
Cr -C4	183.9(8)	C2-Cr-C4	92.8 (4)	06-05-051	104.1 (6)
Cr -P1	236.4(2)	C3-Cr-C2	90.7 (4)	P2-C5-C51	124.5 (5)
Cr -P2	235.0(2)	C3-Cr-C4	85.0 (4)	C5-C6-C7	108.7 (6)
P1 -C6	179.3(6)	C3-Cr-P1	93.0 (3)	P1-C6-C7	131.1 (6)
C6 -C5	149.4(9)	C3-Cr-P2	94.8 (3)	C6-C7-C56	111.1 (7)
P2 -C5	185.0(8)	C1-Cr-C2	90.2 (4)	C6-C7-05	123.8 (7)
C5 -C51	149.7(9)	C1-Cr-C4	88.4 (4)	05-07-056	125.1 (7)
C51-C56	139.8(10)	C1-Cr-P1	86.7 (3)		
C7 <u>-</u> C56	145.0(10)	C1-Cr-P2	91.8 (3)		
C6 -C7	134.8(10)	C1-Cr-C3	173.4 (4)		
C7 <u>-</u> 05	135.8(9)	Cr-P1-C6	106.9 (2)		

Tab. 4. Abstände und Winkel in 6c

Tab. 5. Atomko	rdinaten von 6c
----------------	-----------------

Atom	x/a	v /b	z/c	Atom	x/a	y/b	z/c
Cr	C.0725 (1)	0.0115 (1)	0.2258 (1)	C25	-0.0320 (11)	0.2755 (4)	0.3172 (5)
P1	0.2164 (2)	0.0921 (1)	0.1975 (1)	C26	0.0741 (9)	0.2232 (3)	0.3277 (4)
P2	0.1525 (2)	C.0789 (1)	0.3369 (1)	C31	0.1306 (8)	0.1635 (4)	0.1298 (4)
C1	0.2389 (9)	-0.0456 (4)	0.2688 (4)	C32	0.0298 (9)	0.2059 (4)	0.1384 (4)
01	0.3402 (7)	-0.0810 (3)	0.2920 (3)	033	-0.0365 (9)	0.2613 (4)	0.0921 (5)
C2	-0.0240 (9)	-0.0492 (4)	0.2587 (4)	034	-0.0073 (11)	0.2742 (5)	0.0332 (5)
02	-0.0877 (7)	-0.0869 (3)	0.2797 (4)	C35	0.094 (1)	0.234 (1)	0.023 (1)
C3	-0.1011 (9)	0.0642 (4)	0.1713 (4)	C36	0.1615 (10)	0.1781 (4)	0.0722 (5)
03	-0.2086 (6)	0.0924 (3)	0.1356 (3)	C41	0.3410 (9)	0.0500 (4)	0.1676 (4)
C4	0.0162 (10)	-0.0368 (4)	0.1364 (5)	C42	0.2851 (9)	0.0171 (4)	0.0977 (5)
04	-0.0236 (8)	-0.0683 (3)	0.0811 (3)	C43	0.375 (1)	-0.020 (1)	0.075 (1)
C5	0.3345 (7)	0.1139 (3)	0.3562 (4)	044	0.520 (1)	-0.023 (1)	0.124 (1)
C6	0.3296 (7)	0.1381 (3)	0.2836 (3)	C45	0.576 (1)	0.007 (1)	0.192 (1)
C11	0.1859 (7)	0.0381 (3)	0.4267 (4)	C46	0.4845 (10)	0.0444 (5)	0.2137 (5)
C12	0.2378 (8)	-0.0310 (4)	0.4415 (4)	CE1	0.4119 (7)	0.1724 (4)	0.4107 (4)
C13	0.2666 (9)	-0.0616 (5)	0.5093 (5)	C52	0.4511 (8)	0.1793 (4)	0.4876 (4)
C14	0.2444 (10)	-0.0251 (6)	0.5626 (5)	C53	0.5292 (9)	0.2391 (4)	0.5269 (4)
015	0.1912 (11)	0.0436 (5)	0.5491 (5)	0531	0.5721 (10)	0.2489 (5)	0.6106 (4)
C16	0.1666 (9)	0.0732 (4)	0.4815 (4)	C54	0.5726 (8)	0.2886 (4)	0.4889 (4)
C21	0.0351 (8)	0.1538 (4)	0.3297 (4)	C55	0.5377 (8)	0.2809 (4)	0.4129 (4)
C22	-0.1025 (9)	0.1381 (4)	0.3213 (5)	C56	0.4560 (7)	0.2227 (4)	0.3737 (4)
C23	-0.202 (1)	0.190 (1)	0.312 (1)	C7	0.4019 (8)	0.2000 (4)	0.2958 (4)
C24	-0.1667 (11)	0.2583 (5)	0.3090 (5)	5	0.4212 (5)	0.2355 (2)	0.2416 (3)
				CB	0.3728 (10)	0.3084 (4)	0.2286 (5)

Chem. Ber. 116 (1983)

Kristalldaten (6c): Monoklin, Raumgruppe $P2_1/c$, a = 1027.0(6), b = 1894(2), c = 1987(1) pm, $\beta = 117.24(6)^\circ$, $V = 3435 \cdot 10^6$ pm³, Z = 4, d(ber) = 1.34 g cm⁻³.

Intensitätsmessungen und Strukturlösung: Auf einem Syntex $P2_1$ -Vierkreisdiffraktometer wurden 5189 unabhängige Reflexe gemessen ($2^{\circ} \leq 2\Theta \leq 48^{\circ}$, Mo- K_{α} -Strahlung, Graphit-Monochromator, $\lambda = 71.069$ pm). Lösung der Struktur erfolgte nach der Patterson-Methode, Verfeinerung nach der Methode der kleinsten Quadrate mit der vollständigen Matrix mit anisotropen Temperaturfaktoren für alle Nicht-Wasserstoffatome (Wasserstoffparameter wurden nicht verfeinert; Atomformfaktoren laut International Tables). $R_1 = 0.072$, $R_w = 0.063$ für 3272 Strukturfaktoren mit $F_{\alpha} \geq 3.9 \sigma (F_{\alpha})^{*1}$.

Wir danken der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie für Sach- und Forschungsbeihilfen sowie Herrn Priv.-Doz. Dr. H. Alt und Herrn Dr. K. Eberl für die Aufnahme der NMR-Spektren und Herrn Priv.-Doz. Dr. F. R. Kreißl und Herrn B. Grimberger für die Aufnahme der Massenspektren.

Experimenteller Teil

Alle Arbeiten wurden unter N₂-Schutz ausgeführt. Die Lösungsmittel waren sorgfältig getrocknet und ebenso wie das zur Chromatographie verwendete Kieselgel (Nr. 60, Fa. Merck) mit N₂ gesättigt. – IR-Spektren: Perkin-Elmer Spektrometer 283 B. – NMR-Spektren: Jeol PMX 60 und FX 90Q, Bruker HFX 90. – Massenspektren: Varian MAT 311 A.

Die Komplexe 1a - c wurden nach Literaturangaben¹¹ dargestellt. Bis(diphenylphosphino)acetylen (3) wurde von Fa. Strem bezogen. Die analytischen Daten der neu dargestellten Verbindungen 4-6 sind Tab. 6 zu entnehmen.

-					
	Schmp. (°C)	Ausb. (%)	bez. auf	Summenformel Molmasse	Analyse C H Cr P
4a ^{a)}	106	72	1a	$\begin{array}{c} C_{50}H_{36}Cr_2O_{10}P_2\\ Ber. \ 962.73\\ Gef. \ 938^{f)} \end{array}$	Ber. 62.64 3.87 10.74 6.30 Gef. 62.37 3.77 10.80 6.43
5a ^{b)}	134	78	2 a	$C_{50}H_{36}O_{10}P_2W_2$ Ber. 1226.43	Ber. 48.903.034.91Gef. 48.962.955.05
6a ^{c)}	202	78	1a	C ₃₈ H ₂₈ CrO ₅ P ₂ Ber. 678.54 Gef. 678 ^{g)}	Ber. 67.26 4.16 7.66 9.13 Gef. 66.96 4.18 7.50 9.05
6 b ^{d)}	220	85	16	$C_{39}H_{30}CrO_5P_2$ Ber. 692.57 Gef. 692 ^{g)}	Ber. 67.63 4.37 7.51 8.94 Gef. 67.41 4.38 7.56 9.12
6c ^{e)}	209	74	1c	$C_{39}H_{27}CrF_{3}O_{5}P_{2}$ Ber. 746.55 Gef. 746 ^{g)}	Ber. 62.74 3.65 6.96 8.30 Gef. 62.10 3.71 6.52 8.21

Tab. 6. Schmelzpunkte, Ausbeuten und Analysendaten der Komplexe 4a - 6c

^{a)} μ -Bis(diphenylphosphino)acetylen-bis[tetracarbonyl(methoxyphenylcarben)chrom]. $-^{b)}\mu$ -Bis-(diphenylphosphino)acetylen-bis[tetracarbonyl(methoxyphenylcarben)wolfram]. $-^{c)}$ [1,2-Bis-(diphenylphosphino)-3-methoxyinden]tetracarbonylchrom. $-^{d)}$ [1,2-Bis(diphenylphosphino)-3methoxy-6-methylinden]tetracarbonylchrom. $-^{c)}$ [1,2-Bis(diphenylphosphino)-3-methoxy-6-(trifluormethyl)inden]tetracarbonylchrom. $-^{f)}$ Osmometr. in Benzol. $-^{g)}$ Massenspektrometr.

^{*)} Weitere Einzelheiten zur Kristallstrukturuntersuchung können beim Fachinformationszentrum Energie Physik Mathematik, D-7514 Eggenstein-Leopoldshafen, unter Angabe der Hinterlegungsnummer CSD 50243, des Autors und des Zeitschriftenzitats angefordert werden.

 μ -Bis(diphenylphosphino)acetylen-bis[tetracarbonyl(methoxyphenylcarben)chrom] (4a) und -wolfram] (5a): Eine Lösung von 1.7 mmol Pentacarbonyl(methoxyphenylcarben)chrom (1a) und der äquimolaren Menge 3 in 20 ml Hexan wird 4 h auf 42 °C erwärmt. Nach Abziehen des Lösungsmittels wird mit Methylenchlorid/Pentan (1:1) an Kieselgel chromatographiert. Die rote Zone liefert nach Umkristallisieren aus Methylenchlorid/Pentan orangerote Kristalle. Entsprechend erhält man aus 2a und 3 nach 4 h bei 100 °C bordeauxrote Kristalle des Wolfram-Komplexes 5a.

Allgemeine Arbeitsvorschrift zur Darstellung der Inden-Komplexe 6a - c: Eine Lösung von 2.15 mmol 1a - c und 2.50 mmol 3 in 35 ml Octan wird 4 h auf 90 °C erwärmt. Nach Abziehen des Lösungsmittels i. Vak. wird der Rückstand mit Methylenchlorid/Pentan (1:1) an Kieselgel chromatographiert. Aus der orangeroten Zone erhält man nach Umkristallisieren aus Methylenchlorid/Pentan (1:1) gelbe Kristalle des Inden-Komplexes 6a - c.

Unter gleichen Reaktionsbedingungen kann **6a** auch aus dem Zweikern-Carben-Komplex **4a** dargestellt werden, wobei als weiteres Spaltprodukt der einkernige Carben-Komplex **1a** entsteht.

- ²⁾ K. H. Dötz und R. Dietz, Chem. Ber. 110, 1555 (1977).
- ³⁾ K. H. Dötz, Chem. Ber. 110, 78 (1977).
- ⁴⁾ H. Fischer und K. H. Dötz, Chem. Ber. 113, 193 (1980).
- ⁵⁾ K. H. Dötz und B. Fügen-Köster, Chem. Ber. 113, 1449 (1980).
- ⁶⁾ E. O. Fischer und H. Fischer, Chem. Ber. 107, 657 (1974).
- ⁷⁾ K. Richter, Dissertation, Techn. Univ. München 1975.
- ⁸⁾ K. H. Dötz und D. Neugebauer, Angew. Chem. **90**, 898 (1978); Angew. Chem., Int. Ed. Engl. **17**, 851 (1978).
- ⁹⁾ K. H. Dötz und C. G. Kreiter, Chem. Ber. 109, 2026 (1976).
- ¹⁰⁾ Vgl. U. Schubert, K. Ackermann, N. H. Tran Huy und W. Röll, J. Organomet. Chem. 232, 155 (1982).
- ¹¹⁾ E. O. Fischer, C. G. Kreiter, H. J. Kollmeier, J. Müller und R. D. Fischer, J. Organomet. Chem. 28, 237 (1971).

[327/82]

¹⁾ XXII. Mitteil.: *H. Fischer, J. Mühlemeier, R. Märkl* und *K. H. Dötz*, Chem. Ber. **115**, 1355 (1982).